Tag Archives: quantique

Quarks et changement de couleur

Les quarks possèdent également un autre nombre quantique que l’on a nommé charge de couleur.

Un quark peut êtrenote  « rouge », « vert » ou « bleu », mais il peut changer de couleur en échangeant un gluon (voir plus bas).

À chaque quark correspond une antiparticule, nommée anti-quark, de même masse, mais de charge électrique opposée et de charge de couleur complémentaire, appelée anti-couleurnote  : un anti-quark peut ainsi être « anti-rouge », « anti-vert » ou « anti-bleu ».

La couleur ici est une analogie qui rend compte du fait que l’on n’observe jamais de quark seul.

 

Quarks  et changement de couleur

  

À cause du phénomène de confinement des quarks, on ne peut observer que des particules « blanches », c’est-à-dire formée par exemple de trois quarks de couleurs différentes : un rouge, un bleu et un vert (ce qui donne un baryon) — qui en synthèse additive des couleurs donnent une lumière blanche — , ou de deux quarks de couleurs complémentaires, comme rouge et anti-rouge (ce qui donne un méson).

La charge « de couleur » est la source de l’interaction nucléaire forte : l’interaction nucléaire entre les nucléons et plus généralement entre les hadrons est dérivée de l’interaction « de couleur ».

Comme l’interaction entre atomes et entre molécules est elle-même dérivée de l’interaction électromagnétique entre protons et électrons.

Cette interaction « de couleur » est de type tripolaire, alors que l’interaction électromagnétique est dipolaire (+ et -).

C’est ainsi que l’on a choisi de les nommer par rouge-vert-bleu, car comme la neutralité est la norme pour l’électromagnétisme, la résultante neutre « blanche » est la norme pour les particules constituées par cette interaction.

 

Félix / Einstein / Paradoxe … FEP-086

Félix / Einstein / Paradoxe … Le paradoxe EPR, abréviation de Einstein-Podolsky-Rosen, est une expérience de pensée, élaborée par Albert Einstein, Boris Podolsky et Nathan Rosen, dont le but premier était de réfuter l’interprétation de Copenhague de la physique quantique. L’interprétation de Copenhague s’oppose à l’existence d’un quelconque état d’un système … read more

Atomes dans des réseaux optiques

Atomes dans des réseaux optiques Bosonic froid ou atomes fermioniques dans les réseaux optiques, c’est à dire un réseau périodique de micropièges générés par les contre-propagation des faisceaux laser, est le moyen de fournir un système de laboratoire idéal pour … read more